
Chapter 2

Hydrodynamics

2.1 Flow and massconservation

By definition is flow the quantity of displaced mass per unit time

Q =
dm

dt

This can be rewritten as (m = ρV = ρAl)

Q =
dm

dt
=
dρAl

dt
= ρA

dl

dt
= ρAv

Then if you keep in mind the law of massconservation, this will lead to Castelli’s
law

ρ1A1v1 = ρ2A2v2

and if we consider that the density stays constant (fluid) we arrive at

v1A1 = v2A2

2.1.1 Viscosity

Viscosity is the measure for the way a fluid can flow. We can very well imagine
that there is friction between the molecules of a certain fluid once they start
to move. This friction leads to a tension. (A tension is by definition τ = F

A .)
This tension is a measure for the way a molecule can move so for the viscosity.
By experiment we know that viscosity is due to speed so we can say that the
viscosity is proportional to the gradient of the velocity and finally we get

τ = η
dv

dx

where η is the dynamic viscosity (unit Pa.s).
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Mostly the kinematic viscosity

ν =
η

ρ

(unitm
2

s ) is used.
In the fluidmechanics a lot of dimensionless numbers are used.
The Reynoldsnumber is one of them

Re =
vl

ν

where l is the characteristic length.

2.1.2 Flow and energyconservation

If we look at the law of conservation of energy we have learned in analytical
mechanics we know

(Ek + Ep)1 = (Ek + Ep +A)2

We can rewrite this in terms of fluid mechanics. This means

Ek =
mv2

2
=
ρV v2

2

Ep = mgh = ρV gh

The only energyform we still have to consider is the energy due to pressure pV
and so we get at Bernouilli’s equation

(
ρV v2

2
+ ρV gh+ pV )1 = (

ρV v2

2
+ ρV gh+ pV )2 +A

What do we have to fill out A which is the work done during the transformation
of energy.This work has to be done due to the losses,like friction, induced in the
proces. In our case these are the losses due to friction or the work that a pump
has to supply during the proces. We can rewrite Bernouilli’s equation in terms
of height and then we become

(h+
v2

2g
+

p

ρg
)1 = (h+

v2

2g
+

p

ρg
)2 + τ12

whre τ12 are the losses during transformation of energy in the flow.

2.1.3 Losses during flow

If we want to calculate losses during a flow we have to use several possible
formula’s to make these calculations

Darcy:

hw = λ
lv2

d2g
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To calculate λ we use the formula of Colebrook

λ =
1

(−2log( 2.51
Re
√
λ

+ ε
3.751d

))2

whre ε is a measure for the roughness of the wall.
Be carefull, we are calculating the flow but therefore we need the

losses and for the losses we need to know the speed which is exactly
what we are calculating. So we need to work iteratively, and start by
making an educated guess.

2.1.4 Series- and parallel-flow

If we are working in series the flow stays constant and the losses are the total
sum of the partial losses.

Hw = hw

If we are working in parallel the flow will divide accordingly to the losses
this means taht the flow will separate in the way that the losses over each parallel
part will be the same

hw1 = ... = hwn

and the flow will be
Q = ΣQn

2.1.5 Where does it all start?

Laws of conservation

mass ∂ρ
∂t + div(ρu) = 0

x-momentum ∂ρu
∂t + div(ρuu) = − ∂p

∂x + div(µgradu) + SMx

y-momentum ∂ρv
∂t + div(ρvu) = − ∂p∂y + div(µgradv) + SMy

z-momentum ∂ρw
∂t + div(ρwu) = −∂p∂z + div(µgradw) + SMz

energy ∂ρi
∂t + div(ρiu) = −pdivu + div(kgradT ) + Φ + Si

where S is the momentum source and Φ is the dissipation function. To be able
to solve these equations we have to close the system and therefore we have to
use equations of state.

Sometimes we can use the Navier Stokes equation for incompressible fluids

ρ(
∂v
∂t

+ v.∇v) = −∇p+ µ∇2v + f


